Note on the long-wave limit of the virtual-mass coefficient for a half-immersed circular cylinder heaving on water of finite depth

By P. F. RHODES-R OBINSON
Department of Mathematics, Victoria University of Wellington, New Zealand

(Received 2 March 1976)

This note provides numerical values for the long-wave limit of the virtual-mass coefficient relating to the heaving motion of a half-immersed circular cylinder on water of finite depth, found analytically by Ursell in the preceding paper; some preliminary analysis is needed, however.

The problem where time-harmonic gravity waves are generated in water of finite constant depth by small vertical oscillations of a half-immersed circular cylinder has received considerable attention. Most recently, Ursell (1976) considered the long-wave asymptotic motion, his basic intention being to determine whether or not the virtual-mass coefficient is finite in the long-wave limit. After some complicated mathematical analysis, it was found that this coefficient is in fact finite, and an analytical form was obtained; this depends on a certain limit potential which was given in infinite-series form, but for which the coefficients were undetermined. The purpose of this note is to show that these coefficients may be found as the solution of an infinite system of linear equations and may be computed for any geometrical situation, so that then numerical values for the long-wave limit of the virtual-mass coefficient may be computed from an infinite-series form depending on the coefficients thus found. These values are expected to be helpful to other workers interested in long-wave asymptotic calculations. The idea used is similar to that in Rhodes-Robinson (1970), where numerical values were included for short-wave asymptotic motion, and details now follow.

The long-wave asymptotic value of the virtual-mass coefficient for a halfimmersed circular cylinder of radius a heaving on water of finite constant depth h with angular frequency $\sigma=(g K)^{\frac{1}{2}}$ was determined by Ursell (1976) in the integral form

$$
\text { virtual-mass coefficient } \sim-\frac{4}{\pi} \int_{0}^{\frac{1}{2} \pi}[\hat{B}(a \sin \theta, a \cos \theta ; H)-H] \cos \theta d \theta+O(K h)
$$

as $K h \rightarrow 0$, where we let $H=a / h$ so that $0<H<1$; using rectangular co-ordinates (x, y) and related polar co-ordinates (r, θ), the symmetric potential $\hat{B}(x, y)$ whose value on the cylinder $r=a,|\theta|<\frac{1}{2} \pi$ is involved in this expression uniquely satisfies (for $0<H<1$) Laplace's equation in the fluid region subject to the boundary conditions $\widehat{B}_{y}=0$ on the free surface $y=0,|x|>a$ and bottom $y=h$,
$a \hat{B}_{r}=\cos \theta$ on the cylinder $r=a,|\theta|<\frac{1}{2} \pi$, and $\hat{B}-|x| / h \rightarrow 0$ as $|x| \rightarrow \infty$. Further, this has an expansion (for $r<2 h$ at least) of the form

$$
\widehat{B}(x, y)=\frac{2}{\pi} \widehat{F}(x, y)+\sum_{n=1}^{\infty} a^{2 n} \widehat{B}_{2 n} \hat{F}_{2 n}(x, y)
$$

in terms of the basic potentials

$$
\begin{aligned}
\widehat{F} & =\frac{1}{2} \log [2(\cosh \pi x / h-\cos \pi y / h)] \\
& =\log \pi r / h-\sum_{s=1}^{\infty} \frac{1}{s}(r / 2 h)^{2 s} \zeta(2 s) \cos 2 s \theta
\end{aligned}
$$

and

$$
\widehat{F}_{2 n}=\frac{\cos 2 n \theta}{r^{2 n}}+\frac{2}{(2 n-1)!}(1 / 2 h)^{2 n} \sum_{s=0}^{\infty} \frac{(2 n+2 s-1)!}{(2 s)!}(r / 2 h)^{2 s} \zeta(2 n+2 s) \cos 2 s \theta
$$

($n=1,2, \ldots$), which are respectively a source potential and an infinite set of multipole potentials which are harmonic on the strip $0<y<h,|x|<\infty$ and satisfy the boundary condition for zero normal velocity on $y=0, h$; also $\widehat{F}-\log r$ and $\hat{F}_{2 n}-\cos 2 n \theta \mid r^{2 n}$ are bounded as $r \rightarrow 0$, and $\hat{F}-\pi|x| / 2 h, \hat{F}_{2 n} \rightarrow 0$ as $|x| \rightarrow \infty$ (these expansions involve the Riemann zeta function for integral arguments).

The coefficients $\widehat{B}_{2 n}(H)$ are dimensionless and are determined in principle through application of the boundary condition $a \hat{B}_{r}(a \sin \theta, a \cos \theta)=\cos \theta$. Moreover, if computations of the long-wave limit of the virtual-mass coefficient are to be made, a procedure must be formulated precisely for determining at least numerical values explicitly for $n=1,2, \ldots$, so that \widehat{B} may be regarded as completely determined for any value of H taken; we now give details of this, using the expansions above which are suitable.

On applying the aforementioned boundary condition, we have

$$
\begin{aligned}
\cos \theta= & \frac{2}{\pi}-\frac{4}{\pi} \sum_{s=1}^{\infty}\left(\frac{1}{2} H\right)^{2 s} \zeta(2 s) \cos 2 s \theta+2 \sum_{n=1}^{\infty} \hat{B}_{2 n}[-n \cos 2 n \theta \\
& \left.+\frac{\left(\frac{1}{2} H\right)^{2 n}}{(2 n-1)!} \sum_{s=1}^{\infty} \frac{(2 n+2 s-1)!}{(2 s-1)!}\left(\frac{1}{2} H\right)^{2 s} \zeta(2 n+2 s) \cos 2 s \theta\right] \\
= & \frac{2}{\pi}-2 \sum_{s=1}^{\infty} \cos 2 s \theta\left[\frac{2}{\pi}\left(\frac{1}{2} H\right)^{2 s} \zeta(2 s)+s \widehat{B}_{2 s}\right. \\
& \left.-\frac{\left(\frac{1}{2} H\right)^{2 s}}{(2 s-1)!} \sum_{n=1}^{\infty} \hat{B}_{2 n} \frac{(2 s+2 n-1)!}{(2 n-1)!}\left(\frac{1}{2} H\right)^{2 n} \zeta(2 s+2 n)\right],
\end{aligned}
$$

on rearranging. Now, this expression must coincide with the Fourier cosine series representation

$$
\cos \theta=\frac{2}{\pi}+\frac{4}{\pi} \sum_{s=1}^{\infty} \frac{(-1)^{s-1}}{4 s^{2}-1} \cos 2 s \theta
$$

for the interval $|\theta| \leqslant \frac{1}{2} \pi$, so that by comparison of the coefficients \dagger we obtain the equations

$$
\begin{aligned}
\frac{2}{\pi} \frac{(-1)^{s-1}}{4 s^{2}-1}=-\frac{2}{\pi} & \left(\frac{1}{2} H\right)^{2 s} \zeta(2 s)-s \widehat{B}_{2 s} \\
& \quad+\frac{\left(\frac{1}{2} H\right)^{2 s}}{(2 s-1)!} \sum_{n=1}^{\infty} \widehat{B}_{2 n} \frac{(2 s+2 n-1)!}{(2 n-1)!}\left(\frac{1}{2} H\right)^{2 n} \zeta(2 s+2 n)
\end{aligned}
$$

\dagger Note that the terms outside the summation are identically equal already owing to the exact evaluation of the constant \widehat{B}_{0} by Ursell (1976).

	Long-wave		Long-wave		Long-wave
H	limit	H	limit	H	limit
0.01	$2 \cdot 9099$	$0 \cdot 34$	0.5278	0.67	0.6331
0.02	$2 \cdot 3609$	$0 \cdot 35$	0.5208	0.68	$0 \cdot 6466$
$0 \cdot 03$	$2 \cdot 0452$	$0 \cdot 36$	$0 \cdot 5145$	$0 \cdot 69$	$0 \cdot 6607$
$0 \cdot 04$	$1 \cdot 8250$	$0 \cdot 37$	0.5090	0.70	$0 \cdot 6756$
0.05	$1 \cdot 6573$	$0 \cdot 38$	$0 \cdot 5042$	0.71	0.6913
0.06	$1 \cdot 5227$	0.39	$0 \cdot 5002$	0.72	0.7077
$0 \cdot 07$	1.4111	0.40	$0 \cdot 4969$	0.73	$0 \cdot 7250$
0.08	$1 \cdot 3163$	$0 \cdot 41$	$0 \cdot 4943$	0.74	0.7432
$0 \cdot 09$	$1 \cdot 2343$	$0 \cdot 42$	$0 \cdot 4923$	0.75	0.7622
$0 \cdot 10$	1-1625	$0 \cdot 43$	$0 \cdot 4909$	0.76	0.7823
$0 \cdot 11$	$1 \cdot 0989$	$0 \cdot 44$	$0 \cdot 4902$	0.77	0.8033
$0 \cdot 12$	$1 \cdot 0422$	$0 \cdot 45$	$0 \cdot 4901$	0.78	0.8255
$0 \cdot 13$	0.9912	$0 \cdot 46$	$0 \cdot 4906$	0.79	0.8488
$0 \cdot 14$	0.9451	0.47	$0 \cdot 4917$	0.80	0.8733
0.15	0.9032	$0 \cdot 48$	$0 \cdot 4933$	0.81	0.8992
$0 \cdot 16$	$0 \cdot 8650$	$0 \cdot 49$	$0 \cdot 4956$	0.82	0.9265
$0 \cdot 17$	0.8302	0.50	$0 \cdot 4984$	0.83	0.9554
$0 \cdot 18$	0.7982	0.51	0.5017	0.84	0.9859
$0 \cdot 19$	0.7688	$0 \cdot 52$	$0 \cdot 5057$	0.85	1.0184
$0 \cdot 20$	0.7418	0.53	$0 \cdot 5102$	0.86	1.0529
$0 \cdot 21$	0.7170	$0 \cdot 54$	$0 \cdot 5152$	0.87	1.0897
$0 \cdot 22$	0.6940	$0 \cdot 55$	$0 \cdot 5208$	0.88	1-1290
$0 \cdot 23$	0.6729	$0 \cdot 56$	$0 \cdot 5269$	$0 \cdot 89$	1-1713
$0 \cdot 24$	0.6534	$0 \cdot 57$	$0 \cdot 5337$	0.90	$1 \cdot 2170$
$0 \cdot 25$	0.6354	0.58	$0 \cdot 5409$	0.91	1-2666
$0 \cdot 26$	$0 \cdot 6189$	0.59	$0 \cdot 5488$	0.92	1-3207
$0 \cdot 27$	$0 \cdot 6036$	$0 \cdot 60$	$0 \cdot 5572$	0.93	$1 \cdot 3805$
$0 \cdot 28$	0.5896	$0 \cdot 61$	0.5662	0.94	$1 \cdot 4471$
$0 \cdot 29$	0.5768	$0 \cdot 62$	0.5758	0.95	$1 \cdot 5225$
$0 \cdot 30$	0.5650	0.63	0.5860	0.96	1.6096
0.31	0.5543	$0 \cdot 64$	0.5968	0.97	$1 \cdot 7134$
0.32	0.5446	$0 \cdot 65$	$0 \cdot 6083$	0.98	1.8439
$0 \cdot 33$	0.5358	$0 \cdot 66$	$0 \cdot 6204$	0.99	$2 \cdot 0267$

Table 1. Values of the long-wave limit of the virtual-mass coefficient
$(s=1,2, \ldots)$, i.e. $\hat{B}_{2 s}$ satisfies the infinite linear system

$$
\begin{aligned}
& s \widehat{B}_{2 s}(H)-\frac{\left(\frac{1}{2} H\right)^{2 s}}{(2 s-1)!} \sum_{n=1}^{\infty} \widehat{B}_{2 n}(H) \frac{(2 s+2 n-1)!}{(2 n-1)!}\left(\frac{1}{2} H\right)^{2 n} \zeta(2 s+2 n) \\
&=-\frac{2}{\pi}\left[\frac{(-1)^{s-1}}{4 s^{2}-1}+\left(\frac{1}{2} H\right)^{2 s} \zeta(2 s)\right]
\end{aligned}
$$

for $s=1,2, \ldots$. This may be solved numerically to any required degree of accuracy by truncation to a finite system for any given $H(0<H<1)$ since $\hat{B}_{2 s} \rightarrow 0$ as $s \rightarrow \infty$.

Finally, the virtual-mass coefficient has the long-wave limit

$$
-\frac{4}{\pi} \int_{0}^{\frac{1}{2} \pi}[\widehat{B}(a \sin \theta, a \cos \theta)-H] \cos \theta d \theta=\frac{4}{\pi}\left[\frac{2}{\pi} c_{0}-\sum_{n=1}^{\infty} \hat{B}_{2 n} c_{n}\right]
$$

H	0.10	0.25	0.50
\hat{B}_{2}	-0.2148	-0.2289	-0.2848
\hat{B}_{4}	0.0212	0.0211	0.0192
\hat{B}_{6}	-0.0061	-0.0061	-0.0062
\hat{B}_{8}	0.0025	0.0025	0.0025
B_{10}	-0.0013	-0.0013	-0.0013
\widehat{B}_{12}	0.0007	0.0007	0.0007
\hat{B}_{14}	-0.0005	-0.0005	-0.0005
\hat{B}_{18}	0.0003	0.0003	0.0003
\hat{B}_{18}	-0.0002	-0.0002	-0.0002
\hat{B}_{20}	0.0002	0.0002	0.0002
\widehat{B}_{22}	-0.0001	-0.0001	-0.0001
\hat{B}_{24}	0.0001	0.0001	0.0001
\hat{B}_{26}	-0.0001	-0.0001	-0.0001
\hat{B}_{28}	0.0001	0.0001	0.0001

Table 2. Some values of the expansion coefficients (only those non-zero to four decimal places are shown)
in series form, where

$$
c_{0}(H) \equiv-\log \pi H+\frac{1}{2} \pi H+\sum_{s=1}^{\infty} \frac{1}{s} \frac{(-1)^{s-1}}{4 s^{2}-1}\left(\frac{1}{2} H\right)^{2 s} \zeta(2 s)
$$

and

$$
\begin{array}{r}
c_{n}(H) \equiv \frac{(-1)^{n-1}}{4 n^{2}-1}+2 \frac{\left(\frac{1}{2} H\right)^{2 n}}{(2 n-1)!} \sum_{s=0}^{\infty} \frac{(-1)^{s-1}}{4 s^{2}-1} \frac{(2 n+2 s-1)!}{(2 s)!}\left(\frac{1}{2} H\right)^{2 s} \zeta(2 n+2 s) \\
(n=1,2, \ldots)
\end{array}
$$

therefore this may be evaluated numerically by truncation for $0<H<1$ also, using the previously obtained values for $\widehat{B}_{2 n}(n=1,2, \ldots)$, after the sums for $c_{n}(n=0,1, \ldots)$ have been evaluated in a similar way. [Note that the long-wave limit $\sim-\left(8 / \pi^{2}\right) \log H$ as $H \rightarrow 0$.]

The results of the computations for the long-wave limit are presented in table 1 for the values $\dagger H=0.01,0.02, \ldots, 0.99$; results of the computations for the coefficients employed are shown in table 2 but only for $H=0.10,0.25$ and 0.50 . Note the existence of a minimum value for the long-wave limit, found to be $0 \cdot 4901$ for $H=0 \cdot 4468$. The computations are all correct to four decimal places and were done by Burroughs B6700 computer at Victoria University of Wellington.

The values we have obtained for the long-wave limit would make interpolation possible in any calculations of the virtual-mass coefficient in the range of smaller $K h$; the only calculations at present known to the author are those of Porter (1967, private communication) for $H=0.10,0.25$ and 0.50 (the incorrect ones of Yu \& Ursell 1961 excepted), but these go no lower than $K h=2$ and feasible interpolation is therefore out of the question. It ought to be pointed out, however, that even with suitably low calculations accuracy of interpolation may still be wanting since only the first-order approximation to the virtual-mass coefficient,

[^0]i.e. the long-wave limit, is known as $K h \rightarrow 0$; a second-order approximation would alleviate this uncertainty, but any analytical attempt to obtain it would probably be difficult.

I wish to thank Prof. F. Ursell, F.R.S. (University of Manchester) for giving me a draft of his paper in advance of publication, Mr E. G. C. Smith (Victoria University of Wellington) for his considerable help with the computations, and Victoria University of Wellington for the use of the facilities of the Burroughs B6700 computer.

REFERENCES

Rhodes-Robinson, P. F. 1970 On the short-wave asymptotic motion due to a cylinder heaving on water of finite depth. II. Proc. Camb. Plil. Soc. 67, 443-468.
Urseld, F. 1976 On the virtual-mass and damping coefficients for long waves in water of finite depth. J. Fluid Mech. 76, 17-28.
Yர, Y. S. \& Ursell, F. 1961 Surface waves generated by an oscillating circular cylinder on water of finite depth: theory and experiment. J. Fluid Mech. 11, 529-550.

[^0]: \dagger Results for other values are available.

