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This note provides numerical values for the long-wave limit of the virtual-mass 
coefficient relating to the heaving motion of a half-immersed circular cylinder on 
water of finite depth, found analytically by Ursell in the preceding paper; some 
preliminary analysis is needed, however. 

The problem where time-harmonic gravity waves are generated in water of 
finite constant depth by small vertical oscillations of a half-immersed circular 
cylinder has received considerable attention. Most recently, Ursell (1976) con- 
sidered the long-wave asymptotic motion, his basic intention being to determine 
whether or not the virtual-mass coefficient is finite in the long-wave limit. 
After some complicated mathematical analysis, it  was found that this coefficient 
is in fact finite, and an analytical form was obtained; this depends on a certain 
limit potential which was given in infinite-series form, but for which the coeffi- 
cients were undetermined. The purpose of this note is to show that these coeffi- 
cients may be found as the solution of an infinite system of linear equations and 
may be computed for any geometrical situation, so that then numerical values 
for the long-wave limit of the virtual-mass coefficient may be computed from 
an infinite-series form depending on the coefficients thus found. These values 
are expected to be helpful to other workers interested in long-wave asymptotic 
calculations. The idea used is similar to that in Rhodes-Robinson (1970), where 
numerical values were included for short-wave asymptotic motion, and details 
now follow. 

The long-wave asymptotic value of the virtual-mass coefficient for a half- 
immersed circular cylinder of radius a heaving on water of finite constant depth 
h with angular frequency r = (gK)t was determined by Ursell (1976) in the 
integral form 

virtual-mass coefficient - - - '"[&asinB,acosO; H)-H]cosBdB +O(Kh) 

as Kh+ 0,  where we let H = a/h so that 0 < H < 1; using rectangular co-ordi- 
nates (x, y) and related polar co-ordinates ( r ,  0)) the symmetric potential B(z, y) 
whose value on the cylinder r = a, 101 < 4~ is involved in this expression uniquely 
satisfies (for 0 < H < 1)  Laplace's equation in the fluid region subject to  the 
boundary conditions BV = 0 on the free surface y = 0,Ixl > a and bottom y = h, 

ns, 
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aB, = coseonthecylinderr = a, 101 < $n,aiidB- Ixl/h+Oas Ix1+~0.Further, 
this has an expansion (for r < 2h at  least) of the form 

~ ( x ,  y) = z ~ x ,  y) + c a2nBZn ~ , , ( x ,  y) 

h 

m 

77 7 1 = 1  

in terms of the basic potentials 

P = 4 log [ ~ ( c o s ~  n z / h  - cos ny/h)]  
- 1  

and s=l  s 
= log m / h  - C - ( r / 2 h p  <( 2s) cos 2 ~ 8  

O0 (2n+2s-1) !  
(1/2hI2" c (r/2h)2s <( 2n + 2s) cos 286' cos 2n0 2 

s=o (Xs)! 3 2 %  = F+- ( 2 n  - i)! 

(n = 1,2,  ...), which are respectively a source potential and an infinite set of 
multipole potentials which are harmonic on the strip 0 < y < h, 1x1 < co and 
satisfy the boundary condition for zero normal velocity on y = 0, h; also P - log r 
and pZn-cos2nS/r2?L are bounded as r+O, and P - ~ l x 1 / 2 h ,  PZn+0 as 1x1 +CO 

(these expansions involve the Riemann zeta function for integral arguments). 
The coefficients &(H)  are dimensionless and are determined in principle 

through application of the boundary condition &,(a sin 0, a cos 8 )  = cos 8. More- 
over, if computations of the long-wave limit of the virtual-mass coefficient are 
to  be made, a procedure must be formulated precisely for determining at  least 
numerical values explicitly for 7z = 1,2,  ..., so that B may be regarded as com- 
pletely determined for any value of H taken; we now give details of this, using 
the expansions above which are suitable. 

On applying the aforementioned boundary condition, we have 
m 2 4 "  

cos 0 = - - - c ( ; ~ ) 2 ~ < ( 2 s )  cos 2 s ~  + 2 c BZn 
7l 7ls=l n= 1 

1 (4H)Z'L O0 ( 2 n  +2s- I ) !  +- c ( -JH)2s<(2n +2s)cos2sO 
( 2 n -  i)!s=l (2s-  I ) !  

2 
7l s=1  7l 

m 
= - 2 z; cos 280 [ - ($H)2" 5(2s) +s& 

on rearranging. Now, this expression must coincide with the Fourier cosine series 

n T ~ = ~  4s2-1 

for the interval 181 6 477, so that by comparison of the coefficientsT we obtain 
the equations 

represent ation 2 4 ( - 1 ) s - 1  coso = -+- c ~ cos 280 

t Note that tlie ternis outside the summation are ideiitically equal already owing to  the 
exact evaluation of the constant &,, by Ursell (1976). 
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H 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.20 
0.21 
0.22 
0.23 
0.24 
0.25 
0.26 
0.27 
0.28 
0.29 
0.30 
0.3 1 
0.32 
0.33 

Lo ng-wave 
limit 

2.9099 
2.3609 
2.0452 
1.8250 
1.6573 
1.5227 
1.4111 
1.3163 
1.2343 
1.1625 
1.0989 
1.0422 
0.9912 
0.9451 
0.9032 
0,8650 
0.8302 
0.7982 
0.7688 
0.7118 
0.7170 
0.6940 
0.6729 
0.6534 
0.6354 
0.6189 
0.6036 
0,5896 
0.5768 
0.5650 
0.5543 
0.5446 
0.5358 

H 
0.34 
0.35 
0.36 
0.37 
0.38 
0.39 
0.40 
0.41 
0.42 
0.43 
0.44 
0.45 
0.46 
0.47 
0.48 
0.49 
0.50 
0.5 1 
0.52 
0.53 
0.54 
0.55 
0.56 
0.57 
0.58 
0.59 
0.60 
0.61 
0.62 
0.63 
0.64 
0.65 
0.66 

Long-wave 
limit 

0.5278 
0.5208 
0.5145 
0.5090 
0.5042 
0.5002 
0.4969 
0.4943 
0.4923 
0.4909 
0.4902 
0.4901 
0.4906 
0.4917 
0.4933 
0.4956 
0.4984 
0.5017 
0.5057 
0.5102 
0.8152 
0.5208 
0.5269 
0.5337 
0.5409 
0.5488 
0.5572 
0.5662 
0.5758 
0.5860 
0.5968 
0.6083 
0.6204 

H 
0.67 
0.68 
0.69 
0.70 
0.71 
0.72 
0.73 
0.74 
0.75 
0.76 
0.77 
0.78 
0.79 
0.80 
0.81 
0.82 
0.83 
0.84 
0.85 
0.86 
0.87 
0.88 
0.89 
0.90 
0.91 
0.92 
0.93 
0.94 
0.95 
0.96 
0.97 
0.98 
0.99 

Long-wave 
limit 

0.6331 
0.6466 
0.6607 
0.6756 
0.6913 
0.7077 
0.7250 
0.7432 
0.7622 
0.7823 
0.8033 
0.8255 
0.8488 
0.8733 
0.8992 
0.9265 
0.9554 
0.9859 
1.0184 
1.0529 
1.0897 
1.1290 
1.1713 
1.2170 
1.2666 
1.3207 
1.3805 
1.4471 
1.5225 
1.6096 
1.7134 
1.8439 
2.0267 

TABLE 1. Values of the long-wave limit of the virtual-mass coefficient 

(s = 1 , 2 ,  ...), i.e. B, satisfies the infinite linear system 

for s = 1,2, . . . . This may be solved numerically t o  any required degree of accu- 
racy by truncation to a finite system for any given H (0 < H < S )  since &-f 0 
as s-f 00. 

Finally, the virtual-mass coefficient has the long-wave limit 
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H 0.10 
8 2  - 0.2148 
8 4  0.0212 
8.3 - 0.0061 
8 8  0.0025 

Bl2 0*0007 

81.3 0.0003 

8 1 0  - 0.0013 

2 1 4  - 0'0005 

2 1 8  - 0.0002 
B20 0.0002 
8 2 2  - 0~0001 
B24 0.0001 
B2.3 - 0~0001 
8 2 8  0~0001 

0.25 
- 0.2289 

0.0211 
- 0.0061 

0.0025 
- 0.0013 

0.0007 
- 0*0005 

0.0003 
- 0.0002 

0.0002 
- 0.0001 

0~0001 
- 0~0001 

0~0001 

0.50 
- 0.2848 

0.0192 
- 0.0062 

0.0025 
- 0.0013 

0.0007 
- 0.0005 

0.0003 
- 0.0002 

0.0002 
- 0~0001 

0~0001 
- 0.0001 

0~0001 

TABLE 2. Some values of the expansion coefficients (only those 
non-zero to four decimal places are show-n) 

in series form, where 

and 
( -  1)n-1 ( $ H ) 2 n  * (-1)S-1(2n+2s-1)! 
4n2- 1 ( 2 n -  l)!s=o 4s2- 1 (2s) !  cn(H) f - +2 ~ c- (+H)2" [( 2% + 2s) 

( n  = 1,2 ,  ...); 

therefore this may be evaluated numerically by truncation for 0 < H < 1 also, 
using the previously obtained values for 8,, (n  = 1,2,  ...), after the sums for 
c, (n  = 0,1, ...) have been evaluated in a similar way. [Note that the long-wave 
limit N - (8/n2) log H as H -+ 0.1 

The results of the computations for the long-wave limit are presented in table 
1 for the valuest H = 0.01,0.02, .. ., 0.99; results of the computations for the 
coefficients employed are shown in table 2 but only for H = 0.10, 0.25 and 0.50. 
Note the existence of a minimum value for the long-wave limit, found to be 
0.4901 for H = 0.4468. The computations are all correct to four decimal places 
and were done by Burroughs B6700 computer a t  Victoria University of 
Wellington. 

The values we have obtained for the long-wave limit would make interpolation 
possible in any calculations of the virtual-mass coefficient in the range of smaller 
Kh; the only calculations at present known to the author are those of Porter 
(1967, private communication) for H = 0.10, 0.25 and 0.50 (the incorrect ones of 
Yu & Urselll961 excepted), but these go no lower than Kh = 2 and feasible inter- 
polation is therefore out of the question. It ought to be pointed out, however, 
that even with suitably low calculations accuracy of interpolation may still be 
wanting since only the Grst-order approximation to  the virtual-mass coefficient, 

t Results for other values are available. 
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i.e. the long-wave limit, is known as Kh-t 0; a second-order approximation would 
alleviate this uncertainty, but any analytical attempt to obtain it would probably 
be difficult. 

I wish to thank Prof. F. Ursell, F.R.S. (University of Manchester) for giving me 
a draft of his paper in advance of publication, Mr E. G .  C. Smith (Victoria Uni- 
versity of Wellington) for his considerable help with the computations, and 
Victoria University of Wellington for the use of the facilities of the Burroughs 
B6700 computer. 
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